Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012

Học tập,Phổ thông Trung học,Tài liệu học tập lớp 12
  Đánh giá    Viết đánh giá
 0      101      0
Phí: Tải Miễn phí
Mã tài liệu
0teotq
Danh mục
Học tập,Phổ thông Trung học,Tài liệu học tập lớp 12
Thể loại
Đề thi học sinh giỏi Toán
Ngày đăng
22/5/2015
Loại file
Số trang
0
Dung lượng
Lần xem
101
Lần tải
0
  DOWNLOAD
File đã kiểm duyệt an toàn

HƯỚNG DẪN DOWNLOAD TÀI LIỆU

Bước 1:Tại trang tài liệu thuvienmienphi bạn muốn tải, click vào nút Download màu xanh lá cây ở phía trên.
Bước 2: Tại liên kết tải về, bạn chọn liên kết để tải File về máy tính. Tại đây sẽ có lựa chọn tải File được lưu trên thuvienmienphi
Bước 3: Một thông báo xuất hiện ở phía cuối trình duyệt, hỏi bạn muốn lưu . - Nếu click vào Save, file sẽ được lưu về máy (Quá trình tải file nhanh hay chậm phụ thuộc vào đường truyền internet, dung lượng file bạn muốn tải)
Có nhiều phần mềm hỗ trợ việc download file về máy tính với tốc độ tải file nhanh như: Internet Download Manager (IDM), Free Download Manager, ... Tùy vào sở thích của từng người mà người dùng chọn lựa phần mềm hỗ trợ download cho máy tính của mình  

NỘI DUNG TÀI LIỆU

Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012

 

Chỉ xem 5 trang đầu, hãy download Miễn Phí về để xem toàn bộ

Vndoc.com xin giới thiệu đến các bạn: Đề thi chọn đội tuyển học sinh giỏi Toán lớp 12 năm 2011 - 2012.
Đề thi môn Toán: SỞ GIÁO DỤC VÀ ĐÀO TẠO
THÀNH PHỐ HỒ CHÍ MINH  KỲ THI CHỌN ĐỘI TUYỂN HỌC SINH GIỎI
LỚP 12 NĂM HỌC 2011 - 2012
MÔN THI: TOÁN
Ngày thi thứ nhất: 19 - 10 - 2011
Thời gian làm bài: 180 phút

ĐỀ CHÍNH THỨC
Bài 1: (4 điểm)
Giải hệ phương trình sau:

Bài 2: (4 điểm)
Cho hai đường tròn và cắt nhau tại A và B. Trên tia đối của tia AB lấy điểm M. Cát tuyến qua B cắt (O1) và (O2) lần lượt tại C và D (B nằm giữa C và D). Đường thẳng MC cắt (O1) tại P khác C. Đường thẳng MD cắt (O2) tại Q khác D. Gọi O là tâm đường tròn ngoại tiếp tam giác ACD, E là giao điểm của PB và AC, F là giao điểm của QB và AD. Chứng minh rằng MO vuông góc với EF .
Bài 3: (4 điểm)
Cho a, b, c là các số thực dương, chứng minh rằng:

Bài 4: (4 điểm)
Cho đa thức P(x) = x2012 - mx2010 + m (m#0). Giả sử P(x) có đủ 2012 nghiệm thực. Chứng minh rằng trong các nghiệm của P(x) có ít nhất một nghiệm x0 thoả mãn |x0| Bài 5: (4 điểm)
Cho các số nguyên x, y. Biết rằng: x2 – 2xy + y2 – 5x + 7y và x2 – 3xy + 2y2 + x – y đều chia hết cho 17.
Chứng minh rằng: xy – 12x + 15y chia hết cho 17.

Nguồn: thuvienmienphi

 

Bạn phải gởi bình luận/ đánh giá để thấy được link tải

Nếu bạn chưa đăng nhập xin hãy chọn ĐĂNG KÝ hoặc ĐĂNG NHẬP
 
 

BÌNH LUẬN


Nội dung bậy bạ, spam tài khoản sẽ bị khóa vĩnh viễn, IP sẽ bị khóa.
Đánh giá(nếu muốn)
 BÌNH LUẬN

ĐÁNH GIÁ


ĐIỂM TRUNG BÌNH

0
0 Đánh giá
Tài liệu rất tốt (0)
Tài liệu tốt (0)
Tài liệu rất hay (0)
Tài liệu hay (0)
Bình thường (0)
Thành viên
Nội dung đánh giá

 
LINK DOWNLOAD

De-thi-chon-doi-tuyen-hoc-sinh-gioi-Toan-lop-12-nam-2011-2012.[]

File đã kiểm duyệt
     Báo vi phạm bản quyền
Pass giải nén (Nếu có):
thuvienmienphi.com
DOWNLOAD
(Miễn phí)

Tài liệu tương tự